GABA_A Receptor: Knocked Out

Whitefish Bay SMART Team: Jack Middleton, Wentong Zhang, Shawn Wang, Na'il Scoggins, Frank Zhang, John Park, John Schroeder, Sam Broadnax, Jaun Keo and Wooseung Phillips

Teachers: Paula Krukar, Marla Roberts, Lisa Krueger and Katie Brown

Mentor: Robert Peoples, Ph.D., Department of Biomedical Sciences, Marquette University

Abstract

Propofol is one of the most commonly used anesthetics in modern medicine. Propofol acts on the GABA_A receptor protein resulting in the termination of a signal. When the GABA_A receptor is knocked out, the neuron is more responsive to excitatory signals. Researchers can synthesize new compounds to serve as better anesthetics in hopes of reducing the number of complications of anesthetics.

Significance of Propofol

Propofol is used in most commonly used anesthetics in modern medicine. Propofol acts on the GABA_A receptor protein resulting in the termination of a signal. When the GABA_A receptor is knocked out, the neuron is more responsive to excitatory signals. Researchers can synthesize new compounds to serve as better anesthetics in hopes of reducing the number of complications of anesthetics.

Location of Propofol Binding

The SMART Team Program (Students Modeling A Research Topic) is funded by a grant from NIH-SEPA R25OD010505-01 from NIH-CTSA UL1RR031973.