The Role of Yeast Urea Amidolyase in Patients with Suppressed Immune Systems

PDB: 4ISS

Format: Alpha carbon backbone

RP: Zcorp with plaster

Description:
According to Rice University, 70% of people are affected by the infectious fungus Candida albicans. The immune system uses T and B cells to stop pathogens. People with suppressed immune systems, such as transplant patients, and AIDs or cancer patients, lack functional T and B cells, and rely on macrophages to destroy Candida. Candida can kill and exit macrophages due to an enzyme: urea amidolyase (UAL). While in the macrophage, an environmental change causes Candida to morphologically switch from a sphere to a structure with hyphae. UAL converts urea to ammonia (NH₃) and CO₂, creating an environment for hyphae to form, bursting the macrophage. The Greenfield SMART (Students Modeling A Research Topic) Team used 3D printing technology to model UAL. The biotin carboxylase (BC) domain uses energy from ATP cleavage to attach CO₂ to the swinging arm portion, or biotin carboxyl carrier protein (BCCP) domain. The BCCP domain swings across UAL, attaching CO₂ to urea forming allophanate in the carboxyl transferase (CT) domain. Allophanate moves to the allophanate hydrolase (AH) domain, hydrolyzing the allophanate into CO₂ and NH₃. Increases in CO₂ and NH₃ cause hyphae to form, destroying macrophages and allowing Candida to spread. Researchers could block UAL’s active sites to prevent Candida’s macrophage-killing shape change, preventing systemic candidiasis without damaging human cells.
Specific Model Information:

- The alpha carbon backbone of Chain A is highlighted in purple.
- The alpha carbon backbone of Chain B is highlighted in hot pink.
- Hydrogen bonds within the beta sheets are colored white.
- Structural supports to stabilize the molecule are colored beige.

[Link to SMART Team Program](http://cbm.msoe.edu/smartTeams/)

The SMART Team Program is supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number 8UL1TR000055. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.