I. Abstract

For over a century, vitamin D (vit D) has been used as therapy for the bacteria Mycobacterium tuberculosis (Mt) due to its effects on the immune system. Interest has risen for vit D’s ability to modulate immune responses by signaling through the vitamin D receptor (VDR). Vit D is obtained through dietary sources, like seafood, or exposure to sun’s UVB rays. Vit D in its active form can passively diffuse into multiple cell types, such as lymphocytes, while the VDR, a transcription factor for vit D regulated genes, can regulate the effects of the hormone in these cells. Vit D has been shown to modulate the immune response during Mt infection by controlling production of cytokines and antimicrobial peptides and its interactions with the VDR is critical for these effects. In order to recognize VDR’s role during the immune response to Mt, the Wisconsin Virtual learning SMART Team (Students Modeling A Research Topic) is using 3D printing technology to model the structure, primarily highlighting amino acids Arg274 and His305 which are required for ligand binding to the VDR. Scientists, recognizing vit D’s positive role during an immune response, will continue to investigate vit D as a therapeutic agent to treat this significant plight.

II. The World and vitamin D: A Global Phenomenon

- Mycobacterium tuberculosis (Mt) is a bacterial pathogenic disease
- Mt is second deadliest disease (one third of population infected)
- Current strains of Mt are becoming resistant to treatments
- New discoveries that UVB light exposure may alleviate symptoms of Mt
- New treatments require continued research into vitamin D’s influence on immune responses during Mt infection

Metabolism of Vitamin D

- Body receives vitamin D from sources such as seafood, dairy, and light exposure
- Vitamin D Receptor (VDR) is necessary for vitamin D metabolism
- Vitamin D undergoes hydroxylation in liver and then is converted to its active form

- Vitamin D can passively diffuse into multiple cell types
- VDR is a transcription factor for vit D regulated genes
- VDR regulates effects of hormones in cells

III. Hypothesis

Vitamin D supplementation during Mycobacterium tuberculosis infection will play a beneficial role to the host by decreasing the number of bacteria in the lungs, which is dependent upon the vitamin D receptor.

IV. Examining Vitamin D in Mt-infected Mice

- Put mice on special diets (high vitamin D 20,000 IU/No vitamin D) and aerosol infect the mice with Mt.
- At various time points after infection, aspirate mice with CO2.
- Collect blood from the heart and place in a centrifuge to separate out the serum, perform an Enzyme-Linked Immunosorbent Assay (See chart below) to calculate vitamin D levels
- Collect lungs and spleen from the mice and homogenize the tissues
- Place collected tissues on agar plates and calculate the amount of Mt colonies.

The Enzyme-linked Immunosorbent Assay (ELISA)

ELISA is the process in which scientists use to identify the presence of vitamin D in samples taken from mice. The intensity of the color change in the final product correlates to how much vitamin D is present within the sample.

V. Results

Mice fed diets containing different levels of vitamin D have varying serum vitamin D levels after 24 days. Blood was collected once a week for 4 weeks and serum vitamin D had been determined using ELISA.

VI. Conclusions and Future Direction

- The Vitamin D Receptor is important for the effects we see in the treatment of tuberculosis.
- Vitamin D levels can be manipulated in mice through diet
- High levels of Vitamin D are protective with mice infected with Mt early in infection
- Determine if the effects of vitamin D are in hematopoietic cells (bone marrow cells) using VDR knockout mice

VII. References


SMART Teams are supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number 8UL1TR000055. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.