Cedarburg High School SMART Team

Teacher: Karen Tiffany

Mentor: Michael A. Pickart, Ph.D.
Concordia University Wisconsin, School of Pharmacy

The T Protein: Vertebrae Fit to a T

PDB: 1XBR.pdb


Format: Alpha carbon backbone

RP: Zcorp with plaster

Description:
Congenital vertebral malformations (CVMs) comprise a group of spinal abnormalities that include alterations in vertebral shape or number. Evidence suggests CVMs have a genetic link, possibly resulting from mutations in multiple genes. One candidate gene is T. T protein, a transcription factor found in a variety of animals including humans, is essential for correct embryonic development and guides the development of bone and cartilage from embryonic mesodermal tissue. T protein accumulates in the nuclei of notochord cells, interacts with DNA at specific genes, and acts as a genetic switch to activate the genes. T protein binds to the major and minor grooves of DNA as a dimer. Mutations in T (turning “off” the T protein switch) are hypothesized to result in defects in spinal development. The Cedarburg SMART (Students Modeling A Research Topic) Team has designed a partial model of T protein using 3D printing technology to investigate its structure-function relationship, focusing primarily on the residues important for dimerization of T (Pro125, Asp126, and Pro128) and for binding DNA (Arg67). A 3D model could indicate how the location of the mutations may impact the function of T. T could consequently be a potential target for the development of treatment or prevention options. Program supported by a grant from NIH-CTSA.
Specific Model Information:

- The carbon backbone of T protein is colored papaya whip.
- The alpha helices are colored purple.
- The beta sheets are colored lavender.
- The amino acids involved in dimer formation of T protein (Pro125, Pro128, and Asp126) are colored yellow.
- The amino acid (Arg67) that interacts with Guanine157 of DNA is colored blue.
- The DNA double helix is colored cyan.
- Guanine517 is colored grey. (Arg67 of T protein interacts with this guanine in DNA)
- Hydrogen bonds and structural supports (struts) are colored white.

http://cbm.msoe.edu/smartTeams/

The SMART Team Program is supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number 8UL1TR000055. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.