Monona Grove High School SMART Team

Bradley Hanson
Teacher: Sarah Wright
Mentor: James Keck, Ph.D., University of Wisconsin, Madison

RecQ DNA Helicases in Human Disease

PDB: 4TMU

Primary Citation: Manthei, KA, Hill, MC, Burke, JE, Butcher, SE & Keck, JL (2015) “Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases” Proceedings of the National Academy of Sciences (in press).

Format: Alpha carbon backbone

RP: Zcorp with plaster

Description:
RecQ DNA helicases are found in all organisms and are central players in DNA replication, recombination, and repair. The Monona Grove High School SMART team used 3D printing technology to model the structure of a bacterial RecQ protein bound to DNA. Upon binding, the structure of the protein changes significantly and it becomes active. The positions of domains (colored cyan, blue, yellow, and red) are altered to grip the DNA (shown in grey).

Specific Model Information:
The molecule is colored by domains (helicase domain in teal and blue, zinc-binding domain in yellow, and winged-helix domain in red). DNA is shown in grey. Residues that are shown in orange are sites that cause Bloom’s syndrome when mutated in humans. A residue that base stacks between DNA bases is shown in magenta. Two residues that complete coordination of the zinc ion along with two others that are colored orange as described above, are shown in yellow. A zinc ion is in green. Struts were shown in the default color.