Atorvastatin: 2nd Generation HMG-CoA Reductase Inhibitor

Poster Team Authors: Kristin Blunt, Sam Fischer, Michelle Lynn, Isaac Olstad, Huan Phan
Jmol Design Team Authors: Linnea O’Toole, Elizabeth Weinfurtner
Educators: Daniel S. Sem, Ph.D., Christopher W. Cunningham, Ph.D.
School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097
Professional Mentor: Andrew Ticcioni, Pharm.D. Pharmacy Practice Resident at Wheaton Franciscan - St. Joseph Campus, Milwaukee, WI

Abstract

In 2008, sales for atorvastatin (Lipitor) exceeded 12.4 billion dollars, making it the top-selling brand name pharmaceutical product in the world.1 Atorvastatin is in a class of drugs known as HMG-CoA reductase inhibitors, or statins, and is used in patients to lower “bad” cholesterol levels (specifically LDL levels) by inhibiting the enzyme HMG-CoA reductase.2 Reduced cholesterol levels diminish the risk of heart complications, such as coronary artery disease, heart attack and stroke. In addition, atorvastatin is one of five statins cleared by the liver via cytochrome P450 enzymes. As with this and other statins, side effects such as muscle weakness (myopathy) and liver toxicity are possible and prompt for future drug development centering on patient safety and efficacy.

Molecular Story

Atorvastatin prevents the conversion of HMG-CoA to mevalonate which is an important step in cholesterol synthesis (Figure 1). Atorvastatin is a competitive inhibitor of HMG-CoA reductase and is specific to the HMG-like moiety, allowing them to fit in the binding pocket of HMG-CoA reductase.

The Next Step in Drug Design

Studies have linked the side effect myopathy to ubiquinone protease pathway, a protein degradation pathway.6 An explanation is that statins embed into skeletal muscle cell (myocyte) membranes and cause instability. This instability activates a cascade leading to up-regulation of the ubiquinone protease pathway and thus, greater protein turnover rates in skeletal myocytes.7

Changing the structure of atorvastatin could lower the incidence of myalgia. What should not be changed is the HMG-like moiety, which gives all statins their specificity for HMG-CoA reductase. Atorvastatin is hydrophilic (water repelling) because of its three aromatic rings attached to a central pyrrole ring (Figure 1).7 This enables atorvastatin to easily embed into myocyte membranes. This can potentially be prevented by removing one, two, or all of the aromatic rings, thus making atorvastatin a more hydrophilic (water attracting) statin.

Summary

As cardiovascular-related events continue to rise, the need for cholesterol lowering therapy becomes a necessity and requires knowledgeable pharmacists to educate patients on benefits for early initiation of statin agents. While other statins have been the initial drug therapy for many patients in the past, the recent advent of generic atorvastatin will bring forth more affordable options for physicians and pharmacists alike to choose from in order to provide better patient care.

References